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Multiple Antenna System
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t = 1, 2, ..., t = 1, 2, ..., ppLt transmit antennas; Lr receive antennas; p is the time block size.�ij is the channel coefficient from ith transmit to jth receive antenna and

is a random variable.
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Advantage of Multi-Antenna System: Capacity Gain� Teletar (1995), Foschini and Gans (1998) proved that the capacity of a

multi-antenna system is proportional to minfLt; Lrg.

– Theoretically, the more transmit and receive antennas, the better the

capacity!

– Practically, how can we achieve the capacity (gain)?

– Shannon communication theory tells us that the capacity can be achieved

by coding and modulation, BUT HOW??

—- One of the most active research areas in communications theo ry!
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Single Antenna Coding and Modulation� Low rate transmission: 1 bit modulated to 1 number/symbol (BPSK)� High rate trasnmission: multiple bits modulated to 1 number/symbol

(M-QAM, M-PSK)� Consider 4, 14-QAM: 2, 4 bits become a complex number/symbol:

4



'
&

$
%

What is Multiple Antenna Coding and Modulation:
Signal Model� Transmit and receive signal model:Y = AC +W;

whereY = (rit)Lr�p: Received signal matrixA = (�ij)Lr�Lt : Channel coefficient matrixC = (cjt)Lt�p: Transmit signal matrixW = (wi;t)Lr�p: Additive white Gassian noice (AWGN) matrix.
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What is Multiple Antenna Coding and Modulation� Multiple antenna coding/modulation: Binary information bits are

modulated/mapped into Lt � p matrices and these matrices are taken from a

pre-designed matrix set called space-time code.� How to design a space-time code: It should be designed in such a way that

the error probability at the receiver is minimized.
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Space-Time Code Design Criteria

Based on the pair-wise error probability from the maximum-likelihood (ML)

decoding, Guey-Fitz-Bell-Kuo and Tarokh-Seshadri-Calderbank proposed the

following rank and diversity product criteria:

– Rank criterion : Any differece matrix of any two distinct matrices in a

space-time code C has full rank;

– Diversity product criterion (or coding advantage or product distance):�(C) = minC 6= ~C2C j det((C � ~C)y(C � ~C))j
is as large as possible.
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Some Existing Space-Time Coding Schemes� Space-time block codes

– BLAST–No full diversity

– Alamouti scheme-Orthogonal space-time block codes from orthogonal

designs, quasi orthogonal space-time codes– Fast decoding with good

performance BUT symbol rates are limited!

– Unitary space-time codes: Group codes, Caley transforms, parametric

codes, packing theory etc. – Good performance but no fast decoding in

general, no systematic designs!

– Space-time codes from binary linear codes – Performance is limited!

– Linear lattice based codes – Fast sphere decoding, high rates,

systematic: My focus� Space-time trellis codes
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Linear Lattice Based Space-Time Codes and
Motivation� BLAST schemes� (Quasi) Orthogonal space-time codes (Alamouti, Tarokh et al, Jafarkhani,

Tirkkonen et al etc.)� Linear dispersive codes (Hassibi-Hochwald, Heath et al, Sandhu et al, etc.)� Signal Space Diversity Codes and Diagonal Space-Time Codes using

Algebraic Number Theory (Boutros-Viterbo, Giraud-Boutillon-Belfiore,

Damen-Meraim-Belfiore, Sethuraman-Rajan, ......

– The existing lattice based space-time block codes� Not concrete but simply some abstract algebraic numbers� Mostly based on square QAM, i.e., square lattice.� Not optimized in terms of diversity product
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– The focus of this presentation:� Propose a general systematic and concrete cyclotomic full diversity

lattices.� Propose optimal cyclotomic lattices and space-time block codes in

terms of maximized diversity product for fixed mean signal power.
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General Problem Description� Let Lt be the number of transmit antennas.� Let G be an Lt � Lt matrix and[y1; � � � ;yLt ]T = G[x1; � � � ;xLt ]T ;

where xi are information symbols.� A diagonal space-time code 
 consists of Lt � Lt matrices of the form

diag(y1; � � � ;yLt).
11
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� We are interested in such a diagonal space-time code 
 that

(i) it has the full rank property, i.e., any difference matrix of any two distinct

matrices in 
 has full rank; and

(ii) its following diversity product is as large as possible:

� = min
diag(y1;��� ;yLt )6=diag(e1;��� ;eLt )2
 LtYi=1 jyi � eij2;

where the transmission signal mean power of yi is fixed, or equivalently , the

transmission signal mean power is minimized, when the diversity product is

fixed.
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Cyclotomic Rings� Let �m = exp(j 2�m ) be the mth root of unity.� Let Z[�m] denote the ring generated by Z, all integers, and �m. It is called a

cyclotomic ring.� When m = 4, Z[�m] = Z[j] that is called Gaussian integers.� When m = 3; 6, Z[�3] = Z[�6] that is called Eisenstein integers.� An important result from algebraic number theory: For a fixed L,
min(0;��� ;0)6=(x1;��� ;xL)2(Z[�m])L LYi=1 jxij = 1

where m = 3; 4; 6, i.e., for Gaussian or Eisenstein integers.� We next want to define cyclotomic lattices.
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Real Lattices� An n-dimensional real lattice �n(K) is a subset in R n :
�n(K) =

8>>><>>>:
26664 x1

...xn
37775 = K
26664 z1

...zn
37775
��������� zi 2 Z for 1 � i � n
9>>>=>>>; ;

where Z is the ring of all integers and K is an n� n real matrix of full rank

and called the generating matrix of the real lattice �n(K) anddet(�n(K)) �= j det (K)j.� Every point [x1; x2]T in a two dimensional real lattice �2(K) is treated

equivalently as a complex number x = x1 + jx2 in the complex plane C .� For �m = exp(j 2�m ), we use ��m to denote the two dimensional real lattice
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with the generating matrix
K�m = 24 1 cos( 2�m )0 sin( 2�m )

35 = 24 1 Re(�m)0 Im(�m)
35 :

Thus, ��m = �2(K�m).� ��m � Z[�m ]; ��4 = Z[�4] = Z[j]; and ��3 = ��6 = Z[�3] = Z[�6]
15
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Complex Lattices� Definition : An n-dimensional complex lattice �n(G) over a two dimensional

real lattice �2(K) is a subset of C n :

�n(G) =
8>>><>>>:
26664 y1

...yn
37775 = G
26664 x1

...xn
37775
��������� xi 2 �2(K); for 1 � i � n
9>>>=>>>; ;

where G is an n� n complex matrix of full rank and called the generating

matrix of the complex lattice �n(G). The above complex lattice is called a full

diversity lattice if it satisfies nYi=1 jyij > 0
for any non-zero vector [x1; � � � ;xn]T 6= [0; � � � ; 0]T in (�2(K))n.
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� Examples

– Rotated Codes Based on QAM on the Square Lattice: G2 and G4, 2-point

and 4-point DFT matrices based on Z[�4] (Boutros-Viterbo (98) and

Giraud-Boutillon-Belfiore (97))

– Good Codes for Fading Channels as well as Gaussian Channels: D4, E6,E8, G2; G3; G4 based on Z[�4] and Z[�3] (Boutros-Viterbo (98) and

Giraud-Boutillon-Belfiore (97))

– Diagonal Algebraic Space-Time Block Codes – DAST Block Codes based onZ[�4]: Mn (Boutros-Viterbo (98) and Damen-Meraim-Belfiore (02))
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Cyclotomic Lattices� For two positive integers n and m, let N = mn andLt = �(N)�(m) ;

where �(N) and �(m) are the Euler numbers of N and m, respectively.� Then, there are total Lt distinct integers ni, 1 � i � Lt, with0 = n1 < n2 < � � � < nLt � n� 1 such that 1 + nim and N are

co-prime for any 1 � i � Lt.� With these Lt integers, we define

Gm;n �=
2666664

�N �2N � � � �LtN�1+n2mN �2(1+n2m)N � � � �Lt(1+n2m)N
...

...
. . .

...�1+nLtmN �2(1+nLtm)N � � � �Lt(1+nLtm)N
3777775Lt�Lt

;
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where �N = exp(j 2�N ).� Definition : An Lt dimensional complex lattice �Lt(Gm;n) over ��m is

called a cyclotomic lattice, where Gm;n is defined above and ��m is the two

dimensional real lattice with the generating matrix K�m . Its minimum productdmin(�Lt(Gm;n)) is defined by

dmin(�Lt(Gm;n)) �= min[0;��� ;��� ;0]T 6=[y1;��� ;yLt ]T2�Lt (Gm;n) ����� LtYi=1yi
����� :� Some equivalent forms of Gm;n:Gm;n �= diag(�N ; �1+n2mN ; � � � ; �1+nLtmN ) ^Gm;n;
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where

^Gm;n �=
2666664

1 �N � � � �Lt�1N1 �1+n2mN � � � �(Lt�1)(1+n2m)N

...
...

. . .
...1 �1+nLtmN � � � �(Lt�1)(1+nLtm)N
3777775Lt�Lt

:

Gm;n =
2666664

�n1n �2n1n � � � �Ltn1n�n2n �2n2n � � � �Ltn2n
...

...
. . .

...�nLtn �2nLtn � � � �LtnLtn
3777775Lt�Lt

diag(�N ; �2N ; � � � ; �LtN ):

� A difference with the existing results on this topic is that the above proposed

cyclotomic lattice generating matrix is concrete and systematic.
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� Theorem 1 : A cyclotomic lattice is a full diversity lattice.
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Cyclotomic Diagonal Space-Time Codes� Definition : A diagonal cyclotomic space-time code 
 for Lt transmit

antennas is defined by 
 = fdiag(y1; � � � ;yLt)g where yi for1 � i � Lt are defined as follows:[y1; � � � ;yLt ]T = Gm;n[x1; � � � ;xLt ]

where [x1; � � � ;xLt ]T 2 S � (Z[�m ])Lt and S is a signal constellation

for information symbols.� Theorem 2 : A diagonal cyclotomic space-time code has full diversity.� G2 = ^G4;2 and G4 = ^G4;4.� Question : For a transmit antenna number Lt, there are infinitely many

cyclotomic lattices Gm;n from infinitely many pairs (m;n). For a fixed Lt,
which cyclotomic lattice is optimal in the sense that, its mean transmission

power is minimized when its diversity product is fixed?

22



'
&

$
%

Optimal Cyclotomic Lattices� The mean transmission signal power of signal points on a lattice is reciprocal

to the packing density.� From the packing theory, the packing density is reciprocal to the absolute

value of the determinant of the generating matrix.� The absolute value of the determinant of the generating matrix of a

cyclotomic is j det(Gm;n)j2 � j det(K�m)jLt :
23
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� Criterion : Let �Lt(Gm1;n1) and �Lt(Gm2;n2) be two Lt dimensional

cyclotomic lattices over ��m1 and ��m2 , respectively. We say cyclotomic

lattice �Lt(Gm1;n1) is better than cyclotomic lattice �Lt(Gm2;n2), written

as �Lt(Gm1;n1) � �Lt(Gm2;n2), ifj det(Gm1;n1)j � j det(��m1 )jLt=2 � j det(Gm2;n2)j � j det(��m2 )jLt=2;

when their minimum products are the same, i.e.,dmin(�Lt(Gm1;n1)) = dmin(�Lt(Gm2;n2)).� Define the following normalized minimum productm;n = dmin(�Lt(Gm;n))j det(��m)jLt=2j det(Gm;n)j
24
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� Theorem 3 : If the number of transmit antennas has the formLt = �(3n)�(3) or

�(6n)�(6) ; for some integer n;

then the optimal cyclotomic lattice can be achieved by an Eisenstein

cyclotomic lattice, i.e., m = 3 or m = 6, and the minimum product (or

diversity product) of the optimal cyclotomic lattice is 1.� Examples of such Lt areLt = 3r1pr2�12 (p2 � 1) � � � prk�1k (pk � 1);

where k � 1, p2; � � � ; pk are distinct primes and different from 3, andr1 � 0, r2 � 1; � � � ; rk � 1 are integers, which covers

2,3,4,6,8,9,10,12,16,18,20,22,24,27,28,30,32,....� Corollary : For the listed numbers, Lt, of transmit antennas, the parameters(m;n) of the optimal cyclotomic lattices �Lt(Gm;n) over ��m with

generating matrix Gm;n are listed in the following table.
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Lt (m;n) in Gm;n m;n2 (3; 4); (4; 3); (6; 2) 1p33 (3; 3); (3; 6); (6; 3) 14:18784 (3; 5); (3; 10); (6; 5) 18:38526 (3; 7); (3; 14); (6; 7) 184:20378 (3; 20); (4; 15); (6; 10) 11:125�1039 (3; 9); (3; 18); (6; 9) 11:0303�10410 (3; 11); (3; 22); (6; 11) 12:3655�10412 (3; 15); (3; 30); (6; 15) 14:2981�10516 (3; 40); (4; 30); (6; 20) 13:24�10818 (3; 21); (3; 42); (6; 21) 11:1752�101020 (3; 25); (3; 50); (6; 25) 14:0484�101122 (3; 23); (3; 46); (6; 23) 14:083�101324 (3; 35); (3; 70); (6; 35) 19:8192�101327 (3; 27); (3; 54); (6; 27) 13:0205�101828 (3; 29); (3; 58); (6; 29) 17:3757�101830 (3; 33); (3; 66); (6; 33) 11:8992�102032 (3; 80); (4; 60); (6; 40) 16:8797�1021
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Optimal Diagonal Cyclotomic Space-Time Code
Designs� Optimal diagonal cyclotomic space-time block codes can be designed by

– selecting optimal cyclotomic lattices

– selecting signal points on the optimal cyclotomic lattices with the minimum

mean transmission power (i) the information symbols are independently

selected (ii) the information symbols are jointly selected.� Design Examples
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Diversity Products of Diagonal Codes for Two and Four Transmit Antennas

Bit rate Space-Time Codes, Lt = 2

b/s/Hz M2-Z[j]-QAM G2-Z[j]-QAM G2-Z[j]-Joint G6;2-��6 -QAM G6;2-��6 -Joint

2 14:47 12 12 12 12

3 15:5231 15 14:6562 14:3125 14:125

4 111:2 110 19:5703 18:75 18:2266

Bit rate Space-Time Codes, Lt = 4

b/s/Hz M4-Z[j]-QAM G4-Z[j]-QAM G4-Z[j]-Joint G6;5-��6 -QAM G6;5-��6 -Joint

2 1640 1256 194:15 164 143:0664

3 11000 1400 1323:2265 1297:5625 1170:514

4 14000 11600 11305:9 11225 1681:8418
28
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Simulation Results
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Figure 1: Symbol error rate, information rate R = 2 bits/s/Hz.
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Figure 2: Symbol error rate, information rate R = 3 bits/s/Hz.
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More Results� We have generalized the optimal diagonal cyclotomic space-time codes to

multi-layer cyclotomic space-time codes for 2 and 3 transmit antennas

� Obtained some results on super-orthogonal trellis codes from QAM

constellations� Obtained some results on unitary space-time code designs from APSK

signals
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� Obtained a new family of recursive space-time trellis codes� Obtained closed-form designs of complex orthogonal designs of rates(k + 1)=(2k) for 2k or 2k + 1 transmit antennas.� Obtained some new unitary space-time codes with best and best known

diversity product diversities by using packing theory.� Obtained optimal quasi-orthogonal space-time codes with minimum decoding

complexity.� Obtained a fast iterative decoding algorithm for lattice based space-time

codes based on soft interference cancellation.� Applied some of our newly proposed space-time codes into a relay sensor

network.
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Simulation Result for Our Optimal Full Rate Full
Diversity Code: R = 4 bits/s/Hz
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Future Research� Space-time code designs beyond cyclotomic rings: for example, Z[�m ;p5]� Optimal multi-layer cyclotomic and quadratic space-time codes for more than3 transmit antennas� Space-time code designs for relay sensor networks to achieve optimal

cooperative diversity� Recursive space-time trellis code designs with optimal diversity products� Super quasi orthogonal space-time trellis code designs
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Conclusion� Proposed systematic and concrete full diversity cyclotomic lattices and

space-time block codes.� Proposed optimal cyclotomic lattices and space-time block codes by

minimizing the mean transmission power when their diversity products are

fixed.
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